Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37939785

RESUMO

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Síndromes Epilépticas , Malformações do Desenvolvimento Cortical , Humanos , Fluordesoxiglucose F18 , Malformações do Desenvolvimento Cortical/genética , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Imageamento por Ressonância Magnética/métodos , Convulsões/complicações , Serina-Treonina Quinases TOR , Proteínas Ativadoras de GTPase/genética
2.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628618

RESUMO

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Assuntos
Síndrome de Aicardi , Masculino , Feminino , Animais , Camundongos , Síndrome de Aicardi/genética , Peixe-Zebra/genética , Mapeamento Cromossômico , Genes Ligados ao Cromossomo X/genética , Bioensaio
3.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779245

RESUMO

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Assuntos
Encefalopatias , Síndromes Epilépticas , Espasmos Infantis , Humanos , Encefalopatias/genética , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/genética , Espasmos Infantis/complicações , Convulsões/diagnóstico por imagem , Convulsões/genética , Convulsões/complicações , Encéfalo/patologia , Síndromes Epilépticas/complicações , Eletroencefalografia , Espasmo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-34588213

RESUMO

Maffucci syndrome is a rare, highly variable somatic mosaic condition, and well-known cancer-related gain-of-function variants in either the IDH1 or IDH2 genes have been found in the affected tissues of most reported individuals. Features include benign enchondroma and spindle-cell hemangioma, with a recognized increased risk of various malignancies. Fewer than 200 affected individuals have been reported; therefore, accurate estimates of malignancy risk are difficult to quantify and recommended surveillance guidelines are not available. The same gain-of-function IDH1 and IDH2 variants are also implicated in a variety of other benign and malignant tumors. An adult male presented with several soft palpable lesions on the right upper limb. Imaging and histopathology raised the possibility of Maffucci syndrome. DNA was extracted from peripheral blood lymphocytes and tissue surgically resected from a spindle-cell hemangioma. Sanger sequencing and droplet digital polymerase chain reaction (PCR) analysis of the IDH1 gene were performed. We identified a somatic mosaic c.394C > T (p.R132C) variant in exon 5 of IDH1, in DNA derived from hemangioma tissue at ∼17% variant allele fraction. This variant was absent in DNA derived from blood. This variant has been identified in the affected tissue of most reported individuals with Maffucci syndrome. Although this individual has a potentially targetable variant, and there is a recognized risk of malignant transformation in this condition, a decision was made not to intervene with an IDH1 inhibitor. The reasons and prospects for therapy in this condition are discussed.


Assuntos
Encondromatose , Hemangioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação
5.
Neurology ; 97(2): e178-e190, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33947776

RESUMO

OBJECTIVE: To determine whether 1-stage, limited corticectomy controls seizures in patients with MRI-positive, bottom-of-sulcus dysplasia (BOSD). METHODS: We reviewed clinical, neuroimaging, electrocorticography (ECoG), operative, and histopathology findings in consecutively operated patients with drug-resistant focal epilepsy and MRI-positive BOSD, all of whom underwent corticectomy guided by MRI and ECoG. RESULTS: Thirty-eight patients with a median age at surgery of 10.2 (interquartile range [IQR] 6.0-14.1) years were included. BOSDs involved eloquent cortex in 15 patients. Eighty-seven percent of patients had rhythmic spiking on preresection ECoG. Rhythmic spiking was present in 22 of 24 patients studied with combined depth and surface electrodes, being limited to the dysplastic sulcus in 7 and involving the dysplastic sulcus and gyral crown in 15. Sixty-eight percent of resections were limited to the dysplastic sulcus, leaving the gyral crown. Histopathology was focal cortical dysplasia (FCD) type IIb in 29 patients and FCDIIa in 9. Dysmorphic neurons were present in the bottom of the sulcus but not the top or the gyral crown in 17 of 22 patients. Six (16%) patients required reoperation for postoperative seizures and residual dysplasia; reoperation was not correlated with ECoG, neuroimaging, or histologic abnormalities in the gyral crown. At a median 6.3 (IQR 4.8-9.9) years of follow-up, 33 (87%) patients are seizure-free, 31 off antiseizure medication. CONCLUSION: BOSD can be safely and effectively resected with MRI and ECoG guidance, corticectomy potentially being limited to the dysplastic sulcus, without need for intracranial EEG monitoring and functional mapping. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that 1-stage, limited corticectomy for BOSD is safe and effective for control of seizures.


Assuntos
Córtex Cerebral/cirurgia , Epilepsia/cirurgia , Malformações do Desenvolvimento Cortical do Grupo I/cirurgia , Adolescente , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Criança , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico por imagem , Malformações do Desenvolvimento Cortical do Grupo I/fisiopatologia , Monitorização Fisiológica , Procedimentos Neurocirúrgicos/métodos , Cuidados Pré-Operatórios , Resultado do Tratamento
6.
Epilepsy Res ; 171: 106572, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662678

RESUMO

Our previous studies suggest the tuber center is the seizure focus in tuberous sclerosis complex (TSC). We report findings from 5 epilepsy surgeries in 4 children with TSC and focal motor seizures from single tubers in primary sensorimotor cortex in which resection was limited to the cortex in the tuber center. Intraoperative electrocorticography showed epileptiform activity in the tuber center, with or without propagation to the tuber rim and surrounding perituberal cortex. Histopathology showed an abundance of dysmorphic neurons in the tuber center compared to the rim in four paired specimens, dysmorphic neurons being the reported epileptogenic cell line in TSC. Associated focal motor seizures were eliminated in all children (mean follow up 6.3 years) without postoperative deficits. Tuber center resections are a potential alternative to complete tuberectomy in patients with epileptogenic tubers in eloquent cortex and potentially also in children with a high tuber load and multifocal seizures.


Assuntos
Epilepsia , Convulsões , Córtex Sensório-Motor , Esclerose Tuberosa , Eletrocorticografia , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/cirurgia , Epilepsia Motora Parcial , Humanos , Convulsões/etiologia , Convulsões/cirurgia , Esclerose Tuberosa/complicações , Esclerose Tuberosa/cirurgia
7.
Ann Clin Transl Neurol ; 6(7): 1338-1344, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353856

RESUMO

Focal cortical dysplasia (FCD) causes drug-resistant epilepsy and is associated with pathogenic variants in mTOR pathway genes. How germline variants cause these focal lesions is unclear, however a germline + somatic "2-hit" model is hypothesized. In a boy with drug-resistant epilepsy, FCD, and a germline DEPDC5 pathogenic variant, we show that a second-hit DEPDC5 variant is limited to dysmorphic neurons, and the somatic mutation load correlates with both dysmorphic neuron density and the epileptogenic zone. These findings provide new insights into the molecular and cellular correlates of FCD determining drug-resistant epilepsy and refine conceptualization of the epileptogenic zone.


Assuntos
Proteínas Ativadoras de GTPase/genética , Malformações do Desenvolvimento Cortical/genética , Neurônios/patologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Criança , Epilepsia Resistente a Medicamentos/genética , Humanos , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Mutação , Serina-Treonina Quinases TOR/genética
8.
Neuron ; 97(1): 59-66.e5, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301106

RESUMO

X-linked diseases typically exhibit more severe phenotypes in males than females. In contrast, protocadherin 19 (PCDH19) mutations cause epilepsy in heterozygous females but spare hemizygous males. The cellular mechanism responsible for this unique pattern of X-linked inheritance is unknown. We show that PCDH19 contributes to adhesion specificity in a combinatorial manner such that mosaic expression of Pcdh19 in heterozygous female mice leads to striking sorting between cells expressing wild-type (WT) PCDH19 and null PCDH19 in the developing cortex, correlating with altered network activity. Complete deletion of PCDH19 in heterozygous mice abolishes abnormal cell sorting and restores normal network activity. Furthermore, we identify variable cortical malformations in PCDH19 epilepsy patients. Our results highlight the role of PCDH19 in determining cell adhesion affinities during cortical development and the way segregation of WT and null PCDH19 cells is associated with the unique X-linked inheritance of PCDH19 epilepsy.


Assuntos
Caderinas/genética , Movimento Celular/genética , Córtex Cerebral/anormalidades , Epilepsia/genética , Animais , Córtex Cerebral/embriologia , Epilepsia/embriologia , Feminino , Genes Ligados ao Cromossomo X , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Protocaderinas
9.
Am J Med Genet A ; 176(1): 230-234, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29160035

RESUMO

Inherited metabolic disorders are traditionally diagnosed using broad and expensive panels of screening tests, often including invasive skin and muscle biopsy. Proponents of next-generation genetic sequencing have argued that replacing these screening panels with whole exome sequencing (WES) would save money. Here, we present a complex patient in whom WES allowed diagnosis of GM1 gangliosidosis, caused by homozygous GLB1 mutations, resulting in ß-galactosidase deficiency. A 10-year-old girl had progressive neurologic deterioration, macular cherry-red spot, and cornea verticillata. She had marked clinical improvement with initiation of the ketogenic diet. Comparative genomic hybridization microarray showed mosaic chromosome 3 paternal uniparental disomy (UPD). GM1 gangliosidosis was suspected, however ß-galactosidase assay was normal. Trio WES identified a paternally-inherited pathogenic splice-site GLB1 mutation (c.75+2dupT). The girl had GM1 gangliosidosis; however, enzymatic testing in blood was normal, presumably compensated for by non-UPD cells. Severe neurologic dysfunction occurred due to disruptive effects of UPD brain cells.


Assuntos
Gangliosidose GM1/diagnóstico , Gangliosidose GM1/genética , Estudos de Associação Genética , Mosaicismo , Dissomia Uniparental , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Encéfalo/patologia , Criança , Eletroencefalografia , Ativação Enzimática , Ensaios Enzimáticos , Feminino , Genótipo , Humanos , Neuroimagem , Fenótipo , Células de Schwann/metabolismo , Células de Schwann/ultraestrutura , Pele/patologia , Sequenciamento do Exoma
10.
Epilepsia ; 58(6): 1085-1094, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28440867

RESUMO

OBJECTIVE: This study was designed to describe the spectrum of epilepsy phenotypes in Koolen-de Vries syndrome (KdVS), a genetic syndrome involving dysmorphic features, intellectual disability, hypotonia, and congenital malformations, that occurs secondary to 17q21.31 microdeletions and heterozygous mutations in KANSL1. METHODS: We were invited to attend a large gathering of individuals with KdVS and their families. While there, we recruited individuals with KdVS and seizures, and performed thorough phenotyping. Additional subjects were included who approached us after the family support group brought attention to our research via social media. Inclusion criteria were genetic testing results demonstrating 17q21.31 deletion or KANSL1 mutation, and at least one seizure. RESULTS: Thirty-one individuals were studied, aged 2-35 years. Median age at seizure onset was 3.5 years, and 9 of 22 had refractory seizures 2 years after onset. Focal impaired awareness seizures were the most frequent seizure type occurring in 20 of 31, usually with prominent autonomic features. Twenty-one patients had prolonged seizures and, at times, refractory status epilepticus. Electroencephalography (EEG) showed focal/multifocal epileptiform discharges in 20 of 26. MRI studies of 13 patients were reviewed, and all had structural anomalies. Corpus callosum dysgenesis, abnormal hippocampi, and dilated ventricles were the most common, although periventricular nodular heterotopia, focal cortical dysplasia, abnormal sulcation, and brainstem and cerebellum abnormalities were also observed. One patient underwent epilepsy surgery for a lesion that proved to be an angiocentric glioma. SIGNIFICANCE: The typical epilepsy phenotype of KdVS involves childhood-onset focal seizures that are prolonged and have prominent autonomic features. Multifocal epileptiform discharges are the typical EEG pattern. Structural brain abnormalities may be universal, including signs of abnormal neuroblast migration and abnormal axonal guidance. Epilepsy surgery should be undertaken with care given the widespread neuroanatomic abnormalities; however, tumors are a rare, yet important, occurrence.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/fisiopatologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Anticonvulsivantes/uso terapêutico , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Análise Mutacional de DNA , Eletroencefalografia/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Feminino , Triagem de Portadores Genéticos , Humanos , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Masculino , Proteínas Nucleares/genética , Fenótipo , Resultado do Tratamento , Adulto Jovem
11.
Ann Neurol ; 81(5): 677-689, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28380698

RESUMO

OBJECTIVE: To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. METHODS: We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV 3.1 channels. RESULTS: Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG-electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type KV 3.1, increasing channel availability. INTERPRETATION: MEAK has a relatively homogeneous presentation, resembling Unverricht-Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type KV 3.1 subunit-containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics. Ann Neurol 2017;81:677-689.


Assuntos
Ataxia , Disfunção Cognitiva/etiologia , Epilepsias Mioclônicas , Temperatura Alta , Canais de Potássio Shaw/metabolismo , Adolescente , Adulto , Idade de Início , Ataxia/complicações , Ataxia/diagnóstico por imagem , Ataxia/genética , Ataxia/fisiopatologia , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Feminino , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Canais de Potássio Shaw/genética , Síndrome , Adulto Jovem
12.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250454

RESUMO

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Mutação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/genética , Encéfalo/patologia , Corpo Caloso/patologia , Receptor DCC , Família , Feminino , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Células-Tronco Neurais/patologia , Penetrância , Fenótipo
13.
Pediatrics ; 139(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28330972

RESUMO

Dravet syndrome (DS) is a well-recognized developmental and epileptic encephalopathy associated with SCN1A mutations and 15% mortality by 20 years. Although over half of cases succumb to sudden unexpected death in epilepsy, the cause of death in the remainder is poorly defined. We describe the clinical, radiologic, and pathologic characteristics of a cohort of children with DS and SCN1A mutations who developed fatal cerebral edema causing mass effect after fever-associated status epilepticus. Cases were identified from a review of children with DS enrolled in the Epilepsy Genetics Research Program at The University of Melbourne, Austin Health, who died after fever-associated status epilepticus. Five children were identified, all of whom presented with fever-associated convulsive status epilepticus, developed severe brain swelling, and died. All had de novo SCN1A mutations. Fever of 40°C or greater was measured in all cases. Signs of brainstem dysfunction, indicating cerebral herniation, were first noted 3 to 5 days after initial presentation in 4 patients, though were apparent as early as 24 hours in 1 case. When MRI was performed early in a patient's course, focal regions of cortical diffusion restriction were noted. Later MRI studies demonstrated diffuse cytotoxic edema, with severe cerebral herniation. Postmortem studies revealed diffuse brain edema and widespread neuronal damage. Laminar necrosis was seen in 1 case. Cerebral edema leading to fatal brain herniation is an important, previously unreported sequela of status epilepticus in children with DS. This potentially remediable complication may be a significant contributor to the early mortality of DS.


Assuntos
Edema Encefálico/complicações , Epilepsias Mioclônicas/complicações , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Estado Epiléptico/complicações , Encéfalo/patologia , Criança , Pré-Escolar , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/mortalidade , Feminino , Humanos , Lactente , Masculino , Mutação
14.
Ann Neurol ; 79(1): 132-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26285051

RESUMO

We describe first cousin sibling pairs with focal epilepsy, one of each pair having focal cortical dysplasia (FCD) IIa. Linkage analysis and whole-exome sequencing identified a heterozygous germline frameshift mutation in the gene encoding nitrogen permease regulator-like 3 (NPRL3). NPRL3 is a component of GAP Activity Towards Rags 1, a negative regulator of the mammalian target of rapamycin complex 1 signaling pathway. Immunostaining of resected brain tissue demonstrated mammalian target of rapamycin activation. Screening of 52 unrelated individuals with FCD identified 2 additional patients with FCDIIa and germline NPRL3 mutations. Similar to DEPDC5, NPRL3 mutations may be considered as causal variants in patients with FCD or magnetic resonance imaging-negative focal epilepsy.


Assuntos
Epilepsias Parciais/genética , Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Malformações do Desenvolvimento Cortical do Grupo I/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Linhagem , Transdução de Sinais , Serina-Treonina Quinases TOR
15.
Am J Med Genet A ; 170A(4): 1059-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26708157

RESUMO

Mutations in COL4A1 are well described and result in brain abnormalities manifesting with severe neurological deficits including cerebral palsy, intellectual disability, and focal epilepsy. Families with mutations in COL4A2 are now emerging with a similar phenotype. We describe a family with an autosomal dominant disorder comprising porencephaly, focal epilepsy, and lens opacities, which was negative for mutations in COL4A1. Using whole exome sequencing of three affected individuals from three generations, we identified a rare variant in COL4A2. This COL4A2 (c.2399G>A, p.G800E, CCDS41907.1) variant was predicted to be damaging by multiple bioinformatics tools and affects an invariable glycine residue that is essential for the formation of collagen IV heterotrimers. The cataracts identified in this family expand the phenotypic spectrum associated with mutations in COL4A2 and highlight the increasing overlap with phenotypes associated with COL4A1 mutations.


Assuntos
Catarata/diagnóstico , Catarata/genética , Colágeno Tipo IV/genética , Genes Dominantes , Mutação , Porencefalia/diagnóstico , Porencefalia/genética , Adolescente , Adulto , Idoso , Encéfalo/patologia , Exoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imageamento por Ressonância Magnética , Masculino , Linhagem
16.
Ann Clin Transl Neurol ; 2(5): 575-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26000329

RESUMO

Whole-exome sequencing of two brothers with drug-resistant, early-onset, focal epilepsy secondary to extensive type IIA focal cortical dysplasia identified a paternally inherited, nonsense variant of DEPDC5 (c.C1663T, p.Arg555*). This variant has previously been reported to cause familial focal epilepsy with variable foci in patients with normal brain imaging. Immunostaining of resected brain tissue from both brothers demonstrated mammalian target of rapamycin (mTOR) activation. This report shows the histopathological features of cortical dysplasia associated with a DEPDC5 mutation, confirms mTOR dysregulation in the malformed tissue and expands the spectrum of neurological manifestations of DEPDC5 mutations to include severe phenotypes with large areas of cortical malformation.

17.
Neurology ; 84(20): 2021-8, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25888556

RESUMO

OBJECTIVE: To determine clinical and EEG features that might help identify patients with epilepsy harboring small, intrinsically epileptogenic, surgically treatable, bottom-of-sulcus dysplasias (BOSDs). METHODS: Retrospective review of clinical records, EEG, MRI, and histopathology in 32 patients with drug-resistant epilepsy and MRI-positive (72% 3.0 tesla), pathologically proven (type 2B cortical dysplasia) BOSDs operated at our centers during 2005-2013. RESULTS: Localization of BOSDs was frontal in 19, insula in 5, parietal in 5, and temporal in 3, on the convexity or interhemispheric surfaces. BOSDs were missed on initial MRI at our centers in 22% of patients. Patients presented with focal seizures during infancy in 9, preschool years in 15, and school years in 8 (median age 5 years). Seizures were stereotyped, predominantly nocturnal, and typically nonconvulsive, with semiology referable to the fronto-central or perisylvian regions. Seizures occurred at high frequency during active periods, but often went into prolonged remission with carbamazepine or phenytoin. Intellect was normal or borderline, except in patients with seizure onset during infancy. Scalp EEG frequently revealed localized interictal epileptiform discharges and ictal rhythms. Patients underwent lesionectomy (median age 14 years) guided by electrocorticography and MRI, with prior intracranial EEG monitoring in only one patient. Twenty-eight patients (88%) became seizure-free, and 20 discontinued antiepileptic medication (median follow-up 4.1 years). CONCLUSIONS: In patients with cryptogenic focal epilepsy, this clinical presentation and course should prompt review of or repeat MRI, looking for a BOSD in the frontal, parietal, or insula cortex. If a BOSD is identified, the patient might be considered for single-stage lesionectomy.


Assuntos
Encéfalo/patologia , Epilepsias Parciais/patologia , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Eletroencefalografia , Epilepsias Parciais/etiologia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/fisiopatologia , Malformações do Desenvolvimento Cortical/cirurgia , Estudos Retrospectivos
18.
Neurology ; 84(9): 951-8, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25672921

RESUMO

OBJECTIVE: To delineate the phenotype of early childhood epileptic encephalopathy due to de novo mutations of CHD2, which encodes the chromodomain helicase DNA binding protein 2. METHODS: We analyzed the medical history, MRI, and video-EEG recordings of 9 individuals with de novo CHD2 mutations and one with a de novo 15q26 deletion encompassing CHD2. RESULTS: Seizures began at a mean of 26 months (12-42) with myoclonic seizures in all 10 cases. Seven exhibited exquisite clinical photosensitivity; 6 self-induced with the television. Absence seizures occurred in 9 patients including typical (4), atypical (2), and absence seizures with eyelid myoclonias (4). Generalized tonic-clonic seizures occurred in 9 of 10 cases with a mean onset of 5.8 years. Convulsive and nonconvulsive status epilepticus were later features (6/10, mean onset 9 years). Tonic (40%) and atonic (30%) seizures also occurred. In 3 cases, an unusual seizure type, the atonic-myoclonic-absence was captured on video. A phenotypic spectrum was identified with 7 cases having moderate to severe intellectual disability and refractory seizures including tonic attacks. Their mean age at onset was 23 months. Three cases had a later age at onset (34 months) with relative preservation of intellect and an initial response to antiepileptic medication. CONCLUSION: The phenotypic spectrum of CHD2 encephalopathy has distinctive features of myoclonic epilepsy, marked clinical photosensitivity, atonic-myoclonic-absence, and intellectual disability ranging from mild to severe. Recognition of this genetic entity will permit earlier diagnosis and enable the development of targeted therapies.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Estimulação Luminosa/efeitos adversos , Convulsões/diagnóstico , Convulsões/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Epilepsias Mioclônicas/fisiopatologia , Feminino , Humanos , Masculino , Convulsões/fisiopatologia , Adulto Jovem
19.
Neurology ; 84(6): 586-93, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25596506

RESUMO

OBJECTIVE: To delineate the specific speech deficits in individuals with epilepsy-aphasia syndromes associated with mutations in the glutamate receptor subunit gene GRIN2A. METHODS: We analyzed the speech phenotype associated with GRIN2A mutations in 11 individuals, aged 16 to 64 years, from 3 families. Standardized clinical speech assessments and perceptual analyses of conversational samples were conducted. RESULTS: Individuals showed a characteristic phenotype of dysarthria and dyspraxia with lifelong impact on speech intelligibility in some. Speech was typified by imprecise articulation (11/11, 100%), impaired pitch (monopitch 10/11, 91%) and prosody (stress errors 7/11, 64%), and hypernasality (7/11, 64%). Oral motor impairments and poor performance on maximum vowel duration (8/11, 73%) and repetition of monosyllables (10/11, 91%) and trisyllables (7/11, 64%) supported conversational speech findings. The speech phenotype was present in one individual who did not have seizures. CONCLUSIONS: Distinctive features of dysarthria and dyspraxia are found in individuals with GRIN2A mutations, often in the setting of epilepsy-aphasia syndromes; dysarthria has not been previously recognized in these disorders. Of note, the speech phenotype may occur in the absence of a seizure disorder, reinforcing an important role for GRIN2A in motor speech function. Our findings highlight the need for precise clinical speech assessment and intervention in this group. By understanding the mechanisms involved in GRIN2A disorders, targeted therapy may be designed to improve chronic lifelong deficits in intelligibility.


Assuntos
Apraxias/genética , Disartria/genética , Mutação , Receptores de N-Metil-D-Aspartato/genética , Distúrbios da Fala/genética , Inteligibilidade da Fala , Adolescente , Adulto , Afasia de Broca/genética , Epilepsia/complicações , Feminino , Humanos , Transtornos da Linguagem/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Desempenho Psicomotor , Adulto Jovem
20.
Epilepsy Res ; 109: 40-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25524841

RESUMO

We investigated systematic differences in corpus callosum morphology in periventricular nodular heterotopia (PVNH). Differences in corpus callosum mid-sagittal area and subregional area changes were measured using an automated software-based method. Heterotopic gray matter deposits were automatically labeled and compared with corpus callosum changes. The spatial pattern of corpus callosum changes were interpreted in the context of the characteristic anterior-posterior development of the corpus callosum in healthy individuals. Individuals with periventricular nodular heterotopia were imaged at the Melbourne Brain Center or as part of the multi-site Epilepsy Phenome Genome project. Whole brain T1 weighted MRI was acquired in cases (n=48) and controls (n=663). The corpus callosum was segmented on the mid-sagittal plane using the software "yuki". Heterotopic gray matter and intracranial brain volume was measured using Freesurfer. Differences in corpus callosum area and subregional areas were assessed, as well as the relationship between corpus callosum area and heterotopic GM volume. The anterior-posterior distribution of corpus callosum changes and heterotopic GM nodules were quantified using a novel metric and compared with each other. Corpus callosum area was reduced by 14% in PVNH (p=1.59×10(-9)). The magnitude of the effect was least in the genu (7% reduction) and greatest in the isthmus and splenium (26% reduction). Individuals with higher heterotopic GM volume had a smaller corpus callosum. Heterotopic GM volume was highest in posterior brain regions, however there was no linear relationship between the anterior-posterior position of corpus callosum changes and PVNH nodules. Reduced corpus callosum area is strongly associated with PVNH, and is probably associated with abnormal brain development in this neurological disorder. The primarily posterior corpus callosum changes may inform our understanding of the etiology of PVNH. Our results suggest that interhemispheric pathways are affected in PVNH.


Assuntos
Corpo Caloso/patologia , Heterotopia Nodular Periventricular/patologia , Adolescente , Adulto , Fatores Etários , Idoso , Estudos de Coortes , Corpo Caloso/crescimento & desenvolvimento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA